Methane Review

John Thompson Dong Lab March 14th, 2012 Methane Background Industrial Use Stoichiometric Catalysis Catalytic Catalysis

Why Interest in Methane?

- Depletion of Oil Reserves
- Global Warming due to fossil fuels
- Public Resistance to Nuclear Energy
- Methane combustion > oil

Chem. Rev. 1995, 95, 987.

Fuel Challenges

- Permanent Gas Pressures cannot liquefy, only low temp can
- Pipelines used but requires high pressure and not cost effective
- Purification
 - C2 C4 molecules
 - Sulfur
 - Water

Chem. Rev. 1995, 95, 987.

Synthetic Issues

- Tetrahedral Geometry
- Unusually high C-H bond strength
 - Least reactive alkane by radical reagents
- Methyl cation is highly unstable
 - Least reactive alkane with hydride abstraction
- High Ionization potential
 - Unreactive toward electron transfer reactions
- Methane is sterically unhindered, so in theory a very large reactive catalyst should be selective

Chem. Rev. 1995, 95, 987.

Methane Background Industrial Use Stoichiometric Catalysis Catalytic Catalysis

Industrial Uses of Methane

Holmen. Cat. Today. 2009, 142, 2.

Methanol Conversion

- Steam Reforming
- Fischer-Tropsch

- No direct process
 - Current work: none with high conversion, yield, or catalyst stability

Steam Reforming

• Hydrogen gas from primary energy feedstock $CH_4 + H_2O \rightleftharpoons CO + 3H_2$

• Water Gas-Shift

 $CO + H_2O \rightleftharpoons CO_2 + H_2$

New Zealand Institute of Chemistry

Methanol to Gasoline Process

• Take syn gas produced from steam reforming:

$2H_2 + CO \leftrightarrows CH_3OH$

New Zealand Institute of Chemistry

MTG Process (cont)

• Use of ZSM-5 cat

- #

• Product Composition

Hydrocarbon product	w/w %
Light Gas	1.4
Propane	5.5
Propene	0.2
Isobutane	8.6
n-Butane	3.3
Butenes	1.1
C ₅ ⁺ Gasoline	79.9

Gasoline composition	w/w %
Highly branched alkanes	53
Highly branched alkenes	12
Napthenes (cycloalkanes)	7
Aromatics	28

New Zealand Institute of Chemistry

HZSM-5: Zeolite Socony Mobil

- Chemical formula: $Na_nAl_nSi_{96-n}O_{192}$. $16H_2O$
- Heterogeneous Catalysis

Fischer-Tropsch Process

 $CH_4 + H_2O \xrightarrow{900^{\circ}C} CO + 3 H_2$

 $(2n+1) H_2 + n CO \longrightarrow C_n H_{(2n+2)} + n H_2O$

Methane Background Industrial Use Stoichiometric Catalysis Catalytic Catalysis

Alkyidyne Complexes

- room temp
- 1,2 C-H bond addition
- Methylidene product for polymers

Mindiola. Chem. Sci. 2011, 2, 1457.

1, 2-Addition

• Metal-nonmetal double bond

• Unexplored area

$$(\mathsf{R'NH})_{3}\mathsf{ZrR} \xrightarrow{\Delta} [(\mathsf{R'NH})_{2}\mathsf{Zr}=\mathsf{NR'}] \xrightarrow{\mathsf{CH}_{4}} (\mathsf{R'NH})_{3}\mathsf{ZrCH}_{3}$$

JACS. 1988, 110, 8731.

Oxidation through Pt

- Shilov Process
 - Catalytic in Pt(II) but requires stoichiometric amounts of Pt(IV)
 - Non radical selectivity patterns (Electrophilic)

Low Temperature Oxidation

- Oxidation of Methane to Methyl bisulphate
- 90% selectivity
- Product is of little use
- Must go through another conversion
- 72% yield, 89% convers.
 81% selectivity

Overall: $CH_4 + 1/_2 O_2 \longrightarrow CH_3OH$
$SO_2 + 1/_2 O_2 + H_2 O \longrightarrow H_2 SO_4$
$CH_3OSO_3H + H_2O \longrightarrow CH_3OH + H_2SO_4$
$CH_4 + 2H_2SO_4 \longrightarrow CH_3OSO_3H + SO_2 + 2H_2O$

Periana. Nature. 2002, 417, 507.

Modified Periana's Catalyst

Table 1: Catalytic activity of the molecular Periana catalyst and the heterogeneous PtCFT and K_2 [PtC 4]CFT catalysts in methane oxidation.

Catalyst ^[a]	Finalm ethanolconc. [m olL ⁻¹]	TO N 🗗
Periana catalyst ^[c]	1.65	158
Periana catalyst ^[i]	1.49	355
K ₂ [PtCl ₄]+CTF ^[e]	1.54	201
Pt€TF ^[f]	1.80	246

[a]Reaction conditions: $15 \text{ m L H}_2\text{SO}_4$ (30% SO₃), 40 bar CH₄ pressure (258C), 2.5 h at 2158C. [b]TON based on the platinum content determ ined from SEM /EDX. [c]65 mg Periana catalyst. [d]26 mg Periana catalyst. [e]48 mg CTF with 92 mg K₂[PtCl₄]. [f]Data from the second run with 62 mg PtCTF.

ACIEE. 2009, 48, 6909.

Super Acid Catalysis

• Oxygen-free electrophilic oligomerization

 $nCH_4 \xrightarrow{HBr+AlBr_3} - (CH_x)_{n^-} + H_2$

• Lewis Acid + Bronstead Acid

Table 1 Results of CH₄ oligomerization using different acid catalysts and the effect of temperature; P = 1 atm, T(AlBr₃) = 373 K, $n(CH_4):n(AlBr_3):n(HBr) = 1:0.005:1.32$, residence time = 60 s; selectivities are at reaction time = 4 h except ^a

		9/ CH	Hydrocarbons yield (%C)					
Catalyst	T (K)	$7_0 CH_4$ conv.	C_2	$C_2^{=}$	C ₃	$C_3^{=}$	$C_3^{=}$	C ₅ -C ₈
Blank	673	0.0	_		_		_	
HBr	673	20.0						
AlBr ₃	673	0.0			_	_		
$HBr + AlBr_3$	473 ^a	98.2 ± 1.8			0.15		0.001	0.01
$HBr + AlBr_3$	573	99.1 ± 1.4	_		0.14	_	0.001	0.03
$HBr + AlBr_3$	623	99.9				0.35	0.001	0.02
$HBr + AlBr_3$	673	>99.9	0.11	0.04	_	_		0.04
^a Selectivities at reaction time 2nd h								

^{*a*} Selectivities at reaction time 3rd h.

Chem. Commun. 2011, 47, 785.

Methane Background Industrial Use Stoichiometric Catalysis Catalytic Catalysis

Sigma Bond Metathesis

Oxidative Coupling

- Active site in catalyst activates C-H bond, combusting the reagent
- Goal: find catalytic material where secondary C-H activation is inhibited
 - Membrane separation of methane and O_2

Holmen. Cat. Today. 2009, 142, 2.

Holmen. Cat. Today. 2009, 142, 2.

Rh(II) Porphyrin

• (TMS)Rh dimer

Wayland

Methane Aromatization

- Dehydrogenated methane (absense of oxygen)
 - Benzene, naphthalene, and hydrogen
- Metal Oxide Cat (Mo, W, V, Cr) / Common: MnO_3

Ind. Eng. Chem. Res. 1999, 38, 3860.

Methane Oxidation Study

• Active oxidant in solution and gas phase

Fu. Cat. Today. 2006, 117, 133.

Oxidative Pathways

Fu. Cat. Today. 2006, 117, 133.

 R_2

Catalytic Bimetallic Oxidation

 Use of CuCl₂ with Pd catalyst yielded methanol and its ester as only products, without acetic or formic acid byproducts

Sen. JACS. 1997, 119, 6048.

Acetic Acid Synthesis

- Rh cat one step process
- Only byproducts were methanol and formic acid
- Additives: Pd/C or I⁻
- High [CO] preserve catalyst

observations are consistent with a solut her than metallic rhodium being the act acid formation. In the absence of adde

Sen. Nature. 1994, 368, 613.

Improvement

- This process used for methane, 1% yield
- Shifted to new catalytic system

CH_4	+	со	VO(acac) ₂ (0.05 mmol) $K_2S_2O_8$ (10.0 mmol) TEA (20 ml)	СН3СООН	(1)	
5 atm (0.945 mmol)		20 atm (3.78 mmol)	80°C, 20 h	0.87 mmol TON: 18 93% Yield on CH ₄	93%	Yield

Fujiwara. Studies in Surface Science and Catalysis. 1997

Carbene Insertion

• Supercritical CO_2 - methane soluble

Science. 2012, 332, 835.

Conclusions

- Most current methods require harsh conditions and yield bad selectivity
- Over oxidation common
- Heterogeneous pathways are hard to control
- Stoichiometric pathways are too costly and impractical
- Methane activation will become a necessary pathway to fuel in the near future.

Bond Strength

pKa

1. Provide the mechanism for the super acid oligomerization of methane.

$$nCH_4 \xrightarrow{HBr+AlBr_3} - (CH_x)_{n^-} + H_2$$

2. What are the 3 products of the carbene insertion below? (Select major product).

3. Provide an arrow pushing mechanism for the transformation below. (Hint: Zn/AcOH cleaves N-O bonds)

Question

Superacid formation:

 $Al_{2}Br_{6} \xrightarrow{\Delta} 2AlBr_{3} \qquad ----- (1)$ $AlBr_{3} + HBr \xrightarrow{} H^{+}AlBr_{4} \xrightarrow{} ----- (2)$

Foramtion of higher alkanes

(8)

(9)

Carbene Insertion (Alkanes)

 $\label{eq:rescaled_$

